Beyond the Break
Role of Vitamin D in Nutrition, Bone health and Osteoporosis Clinical: updates & practical considerations

Presenter: Hope Weiler, RD(CDO), PhD
Date: March 4, 2016
Disclosures

- OC Consultant 2013- ; OC Knowledge Transfer Committee 2013-2015
- Research funding CIHR, NSERC, CFI, Canada Research Chair 2005-2015, ESAC DFC
- Participated in systematic reviews for IOM:
 - Cranney et al 2007, Evid Rep Technol Assess (Full Rep) as co-author
 - Chung et al 2009, Evid Rep Technol Assess (Full Rep) as content reviewer
- Euro-pharm International Canada Inc., has provided in-kind product (Gallo et al, JAMA 2013)
Learning Objectives

• By attending this workshop, physicians and health care professionals will have a strong understanding of:
 – Epidemiology of osteoporosis, falls and fractures in Canada
 – Practice guidelines in Canada for prevention and management of osteoporosis
 – The physiology of vitamin D
 – Measurement of vitamin D status and definitions
 – Evidence behind recommendations – focus on vitamin D
 – New concepts in vitamin D nutrition
 • falls and fracture prevention, lean body mass
Community residents

- Risk factors: female, aboriginal, income below 5th quintile, underweight.

- Men > 50 y overall - may be under-diagnosed - 6.6%
 Tenenhouse et al, Osteoporos Int 2000.
Life expectancy continues to increase

<table>
<thead>
<tr>
<th>Year</th>
<th>Men (y)</th>
<th>Women (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-02</td>
<td>77</td>
<td>82</td>
</tr>
<tr>
<td>2007-09</td>
<td>79</td>
<td>83</td>
</tr>
<tr>
<td>2041</td>
<td>81</td>
<td>86</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>% ≥65 y</th>
<th>% ≥ 80 y</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>15.3</td>
<td>4.1</td>
</tr>
<tr>
<td>2026</td>
<td></td>
<td>5.3</td>
</tr>
<tr>
<td>2030-45</td>
<td>22.8</td>
<td>9.6</td>
</tr>
</tbody>
</table>

Life expectancy at birth

2 Canada’s Aging Population, Health Canada, 2002, p. 5-6

3 The Daily, Statistics Canada, Sept 17, 2014 (based on medium growth)
Osteoporosis/Fracture

• 57,413 osteoporosis-related fractures 2007/-8
 – 14.5 d mean hospital stay
 – Hip fractures accounted for half of the hospitalized d
• 112,740 emergency visits,
 – 85% wrist fx
• 3433 same day surgeries
 – 30% wrist
 – 23% hip
 – 30% other fractures
• $1.2 billion
 – Highest cost for multiple fractures and hip fractures ($20,163/hospitalization)
 – 53% of total costs hip fractures
• Continuing care
 – 91 additional days
 – Estimated $245 million in home care
 • 41% hip fractures

Tarride et al, Osteoporos Int, 2012
Injuries and Falls → Fracture

- Those 85 y or over
 - 70% more likely to have an injury
 - 60% more common in women
 - Falls are the main cause

- Falls
 - 65% of all injuries
 - 84% of injury-related admissions
 - 58% of injury-related deaths
 - Annual health care costs due to falls
 - $1.2 billion (50% due to hip fractures)

Falls and Osteoporosis in Canada

CCHS community surveillance

CANSIM Database 2008-2009 Statistics Canada
Life after fracture?

Tarride et al, Osteoporos Int, 2012
Prevention & management of osteoporosis – lifestyle including diet, supplements and exercise

☑ Exercise resistance &/or weight bearing activity
 • Improves physical function, pain, strength and balance

☑ Nutrition to build or preserve mineral mass

Before age 50 y:
 • High risk 800 to 2000 IU vitamin D/d

Over age 50 y:
 • Calcium 1200 mg/d total
 • Vitamin D 400-1000 IU/d; 800-1000 IU/d if high risk

Papaioannou et al, CMAJ 2010
Diagnosis of Osteoporosis: > 50 y

T-score below -2.5 = osteoporosis

Papaioannou et al, CMAJ 2010
Vitamin D + Ca for preventing fractures

Avenell et al, Cochrane Database of Systematic Reviews; 14 APR 2014 DOI: 10.1002/14651858.
Summary of Findings for the Main Comparison

Vitamin D (D2, D3 or 25(OH)D) plus calcium compared with control or placebo for preventing fractures in older people

Patient or population: post-menopausal women and older people at risk of osteoporotic fractures
Settings: community or institutional
Intervention: vitamin D (D2, D3 or 25(OH)D) plus calcium
Comparison: control or placebo

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Illustrative comparative risks* (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>No of Participants (studies)</th>
<th>Quality of the evidence (GRADE)</th>
<th>Comments Notes on assessment of the quality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assumed risk</td>
<td>Corresponding risk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No vitamin D plus calcium</td>
<td>Vitamin D plus calcium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persons sustaining new hip fracture (1 year estimate)¹</td>
<td>Lower risk population²</td>
<td>RR 0.84 (0.74 to 0.96)</td>
<td>49,853 participants (9 trials)</td>
<td>☀☀☀ high</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 per 1000</td>
<td>7 per 1000 (6 to 8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High risk population³</td>
<td>54 per 1000 (40 to 52)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persons sustaining new non-vertebral fracture (1 year estimate)¹</td>
<td>Overall population⁴</td>
<td>RR 0.86 (0.78 to 0.96)</td>
<td>10,380 participants (8 trials)</td>
<td>☀☀☀ high</td>
<td></td>
</tr>
<tr>
<td></td>
<td>39 per 1000</td>
<td>34 per 1000 (30 to 37)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Illustrative comparative risks calculated from data in the review

1. Vandenbroucke et al, Cochrane Database Systematic Reviews 2013
2. Lindsay, Bone 2003
4. Harris et al, J Bone Miner Res 2002

Avenell et al, Cochrane Review 2014
Terminology

- Cholecalciferol or vitamin D₃
- Ergocalciferol or vitamin D₂
- Vitamin D
 - 1 μg = 40 IU vitamin D
- 25-hydroxyvitamin D or calcidiol
 - 1 ng/ml =~ 2.5 nmol/L
- 1,25(OH)₂D or calcitriol
Sources of vitamin D

[25(OH)D] = status indicator
Sun, diet and supplements
50 nmol/L Health Canada/IOM
75 nmol/L Osteoporosis Canada

Modified from Norman, A. W
Am J Clin Nutr 2008;88:1455-1456
Dietary Reference Intakes

IOM 2011

<table>
<thead>
<tr>
<th>Age</th>
<th>Vitamin D RDA μg (IU)</th>
<th>Vitamin D UL μg (IU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 6 mo</td>
<td>(AI: 400 IU)</td>
<td>1000</td>
</tr>
<tr>
<td>7 - 12 mo</td>
<td>(AI: 400 IU)</td>
<td>1500</td>
</tr>
<tr>
<td>1 - 3 y</td>
<td>600</td>
<td>2500</td>
</tr>
<tr>
<td>4 - 8 y</td>
<td>600</td>
<td>3000</td>
</tr>
<tr>
<td>9 - 18 y</td>
<td>600</td>
<td>4000</td>
</tr>
<tr>
<td>19 - 50 y</td>
<td>600</td>
<td>4000</td>
</tr>
<tr>
<td>50 - 70 y</td>
<td>600</td>
<td>4000</td>
</tr>
<tr>
<td>> 70 y</td>
<td>800</td>
<td>4000</td>
</tr>
</tbody>
</table>
Chart 1
Distribution of vitamin D levels in Canadians aged 3 to 79, by age group, household population, Canada, 2012 to 2013

- Total: 61%
- 3 to 11 years: 74%
- 12 to 19 years: 61%
- 20 to 59 years: 27%
- 60 to 79 years: 20%

E use with caution (data with a coefficient of variation (CV) from 16.6% to 33.3%)
F too unreliable to be published (data with a coefficient of variation (CV) greater than 33.3%; suppressed due to extreme sampling variability)

Source: Canadian Health Measures Survey, 2012 to 2013

www.statcan.gc.ca 2014-12-16.
Serum 25-hydroxyvitamin D and risk of major osteoporotic fractures in older U.S. adults

Looker et al, 2013 JBMR

Journal of Bone and Mineral Research
http://onlinelibrary.wiley.com/doi/10.1002/jbmr.1828/full#fig1
Tests are now indicated only for individuals with specific conditions:

- Osteoporosis, rickets, osteomalacia, malabsorption syndromes, renal disease and if taking medications that may affect vitamin D status.

https://www.cadth.ca/media/pdf/htis/jan-2015/RC0626%20Vitamin%20D%20Testing%20Final.pdf
Endogenous Synthesis

- Moderately fair-skinned 6 to 7 min/d mid-morning to mid-afternoon on most days to maintain vitamin D status
- Risk of low status:
 - Housebound, community-dwelling older people
 - Disabled people
 - Residential care
 - Dark-skinned people
 - Clothing coverage
 - Regular avoidance of sun
 - Indoor workers

Exogenous Intakes

- In countries with no fortification policy, most adults are likely to achieve 5 to 10% of needs by food
- If sun exposure is minimal
 - 600 IU/d people < 70 y
 - 800 IU/d people > 70 y
 - High risk may require higher dosages

"Vitamin D and health in adults in Australia and New Zealand: a position statement”
Nowson et al, 2014 MJA
Potential contribution to dietary vitamin D intake

- Fluid milk (~100 IU or 2.5 μg/250 ml)
 - 19-50 y: 2 servings ~200 IU or 5 μg/d
 - 51+ y: 3 servings ~300 IU or 7.5 μg/d
 - > 50 y: 3 servings + 400 IU/10 μg supplement

= 700 IU or >15 μg/d

http://www.hc-sc.gc.ca
Dietary Patterns:

- It is possible to achieve intakes mostly from food as long as compliance to food and supplements is high.

<table>
<thead>
<tr>
<th>Food</th>
<th>Vitamin D (IU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk 3 cups/d</td>
<td>300 (or 2 enriched)</td>
</tr>
<tr>
<td>Orange juice 0.5 cup/d</td>
<td>50</td>
</tr>
<tr>
<td>Egg whole/d</td>
<td>25</td>
</tr>
<tr>
<td>Pink Salmon 7 oz/wk</td>
<td>171</td>
</tr>
<tr>
<td>Yoghurt 175 g made with fortified milk</td>
<td>44</td>
</tr>
<tr>
<td>Margarine 4 tsp/d</td>
<td>100</td>
</tr>
<tr>
<td>Supplement</td>
<td>400</td>
</tr>
</tbody>
</table>

Total=1090 IU

May be feasible at most ages from childhood to aging
Vitamin D Intakes of Canadians from Food (CCHS; mean μg/d)

<table>
<thead>
<tr>
<th>Age (y)</th>
<th>Males and Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>6.5</td>
</tr>
<tr>
<td>4-8</td>
<td>6.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age (y)</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-13</td>
<td>7.0</td>
<td>5.7</td>
</tr>
<tr>
<td>14-18</td>
<td>7.6</td>
<td>5.0</td>
</tr>
<tr>
<td>19-30</td>
<td>5.9</td>
<td>4.7 (188 IU)</td>
</tr>
<tr>
<td>31-50</td>
<td>5.8</td>
<td>5.2 (208 IU)</td>
</tr>
<tr>
<td>51-70</td>
<td>7.1 (284 IU)</td>
<td>5.0 (200 IU)</td>
</tr>
<tr>
<td>>70</td>
<td>6.3 (252 IU)</td>
<td>5.3 (212 IU)</td>
</tr>
</tbody>
</table>

- 5 μg = 200 IU
- 10 μg = 400 IU
- 15 μg = 600 IU

Milk products intake
- 51-70 y: <1.4 servings
- >70 y: <1.4 servings

Canadian seniors on average meet less than ¼ of the recommended servings of milk products.
Percentage below recommended minimum number of servings of milk products, by age group and sex, household population ages 4 or older, Canada excluding territories, 2004.

49% of vitamin D intake from food is derived from milk.
Responsive of 25(OH)D to 1 µg or 40 IU:

- Supplementation: elevates by 1.4 nmol/L
- Food: elevates by 3.1 nmol/L
- Summer: 14 nmol/L higher

Barake et al, J Nutr 2010
Random-effects meta-analysis comparing the effects of daily and bolus supplementation of D3 with that of D2 on net changes in serum 25(OH)D concentrations.

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Mean D3</th>
<th>SD D3</th>
<th>Total D3</th>
<th>Mean D2</th>
<th>SD D2</th>
<th>Total D2</th>
<th>Weight</th>
<th>Mean Difference (IV, Random, 95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biancuzzo 2010-1 (7)</td>
<td>23.3</td>
<td>17.8</td>
<td>20</td>
<td>27</td>
<td>14.8</td>
<td>16</td>
<td>11.2%</td>
<td>-3.70 [-14.35, 6.95]</td>
</tr>
<tr>
<td>Biancuzzo 2010-2 (7)</td>
<td>32</td>
<td>25.3</td>
<td>18</td>
<td>26.5</td>
<td>18</td>
<td>17</td>
<td>9.9%</td>
<td>5.50 [-8.99, 19.99]</td>
</tr>
<tr>
<td>Binkley 2011-1 (15)</td>
<td>23</td>
<td>33.8</td>
<td>16</td>
<td>15.3</td>
<td>16.5</td>
<td>16</td>
<td>8.6%</td>
<td>7.70 [-10.73, 26.13]</td>
</tr>
<tr>
<td>Binkley 2011-2 (15)</td>
<td>22.3</td>
<td>18.3</td>
<td>15</td>
<td>9</td>
<td>14.3</td>
<td>16</td>
<td>10.9%</td>
<td>13.30 [1.69, 24.91]</td>
</tr>
<tr>
<td>Glendenning 2009 (16)</td>
<td>40</td>
<td>24.7</td>
<td>17</td>
<td>26</td>
<td>11.2</td>
<td>20</td>
<td>10.5%</td>
<td>14.00 [1.27, 26.73]</td>
</tr>
<tr>
<td>Heaney 2011 (17)</td>
<td>98.4</td>
<td>29.1</td>
<td>17</td>
<td>57.4</td>
<td>22</td>
<td>16</td>
<td>8.9%</td>
<td>41.00 [23.46, 58.54]</td>
</tr>
<tr>
<td>Holick 2008 (6)</td>
<td>23.3</td>
<td>17.8</td>
<td>20</td>
<td>24.8</td>
<td>8</td>
<td>16</td>
<td>11.8%</td>
<td>-1.50 [-10.23, 7.23]</td>
</tr>
<tr>
<td>Romagnoli 2008-1 (5)</td>
<td>70.2</td>
<td>20.8</td>
<td>8</td>
<td>25.5</td>
<td>16.9</td>
<td>8</td>
<td>8.6%</td>
<td>44.70 [26.13, 63.27]</td>
</tr>
<tr>
<td>Romagnoli 2008-2 (5)</td>
<td>65.4</td>
<td>30.3</td>
<td>8</td>
<td>23.1</td>
<td>13.8</td>
<td>8</td>
<td>7.2%</td>
<td>42.30 [19.23, 65.37]</td>
</tr>
<tr>
<td>Trang 1998 (4)</td>
<td>23.3</td>
<td>15.7</td>
<td>55</td>
<td>13.7</td>
<td>11.4</td>
<td>17</td>
<td>12.3%</td>
<td>9.60 [2.77, 16.43]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>194</td>
<td>150</td>
<td>100.0%</td>
<td>15.23 [6.12, 24.34]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: \(\tau^2 = 162.74; \ Chi^2 = 47.10, df = 9\) (\(P < 0.00001\); \(P = 81\%\))

Test for overall effect: \(Z = 3.28\) (\(P = 0.001\))

Mean difference D3 over D2: 15.23; 95% CI: 6.12, 24.34; \(P = 0.001\)

Taking the same vitamin D with the largest meal improves absorption and higher serum levels of 25-hydroxyvitamin D.

Meal conditions affect absorption of vitamin D₃ but not status response.

50,000 IU tablet every 3 mo.

Like letters indicate different P ≤ 0.04.
Muscle and Vitamin D

- **Muscle strength**
 - Standardized mean difference 0.17 (P=0.02).
 - >65 y standardized mean difference of 0.25 (0.01 to 0.48) vs younger 0.03 (-0.08 to 0.14)

- **Muscle Mass**
 - NS

- **Muscle Power**
 - NS

Beaudart et al 2014
Falls in community – Vitamin D supplementation helps if low status

Gillespie et al 2012

Rate of falls: RaR 0.57 (0.37-0.89); Risk of falls: RR 0.70 (0.56-0.87)

“Overall vitamin D did not reduce rate of falls or risk of falling; but may do so in people with lower vitamin D levels before treatment”
Vitamin D and Falls

Review: Interventions for preventing falls in older people in care facilities and hospitals
Comparison: 4 Vitamin D supplementation vs no vitamin D supplementation (care facilities)
Outcome: 1 Rate of falls

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Vitamin D</th>
<th>No vitamin D</th>
<th>log [Rate ratio] (SE)</th>
<th>Rate ratio IV,Random,95% Cl</th>
<th>Weight</th>
<th>Rate ratio IV,Random,95% Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Vitamin D3 + calcium vs calcium</td>
<td>Bischoff 2003</td>
<td>62 60</td>
<td>-0.67 (0.41)</td>
<td></td>
<td>10.9 %</td>
<td>0.51 [0.23, 1.14]</td>
</tr>
<tr>
<td>Flicker 2005</td>
<td>313 312</td>
<td>-0.31 (0.13)</td>
<td></td>
<td>29.9 %</td>
<td>0.73 [0.57, 0.95]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td>40.8 %</td>
<td>0.71 [0.56, 0.90]</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Tau^2 = 0.0; Chi^2 = 0.70; df = 1 (P = 0.40); I^2 = 0.0%</td>
<td>Test for overall effect: Z = 2.77 (P = 0.0057)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Vitamin D2 vs usual care or placebo</td>
<td>Broe 2007 (1)</td>
<td>23 25</td>
<td>-1.27 (0.51)</td>
<td></td>
<td>7.9 %</td>
<td>0.28 [0.10, 0.76]</td>
</tr>
<tr>
<td>Lavy 2006</td>
<td>1762 1955</td>
<td>-0.14 (0.04)</td>
<td></td>
<td>36.2 %</td>
<td>0.87 [0.80, 0.94]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td>44.1 %</td>
<td>0.55 [0.19, 1.64]</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Tau^2 = 0.51; Chi^2 = 4.88; df = 1 (P = 0.03); I^2 = 80%</td>
<td>Test for overall effect: Z = 1.07 (P = 0.29)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Multivitamins (including vitamin D3 + calcium) vs placebo</td>
<td>Griefer 2009</td>
<td>48 43</td>
<td>-0.97 (0.32)</td>
<td></td>
<td>15.1 %</td>
<td>0.38 [0.20, 0.71]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td>15.1 %</td>
<td>0.38 [0.20, 0.71]</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: not applicable</td>
<td>Test for overall effect: Z = 3.03 (P = 0.0024)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td>100.0 %</td>
<td>0.63 [0.46, 0.86]</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Tau^2 = 0.07; Chi^2 = 14.08; df = 4 (P = 0.01); I^2 = 72%</td>
<td>Test for overall effect: Z = 2.87 (P = 0.0041)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for subgroup differences: Chi^2 = 3.43, df = 2 (P = 0.18), I^2 = 42%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) 800 IU vitamin D group only vs placebo

Cameron et al, 2012
Vitamin D in Skeletal Muscle

Gene transcription:
IGF-1, VDR, calmodulin,
type 2 muscle CSA

Non-genomic effects

VDR

CYP27B1
Mitochondria

1,25(OH)₂D

25(OH)D

Skeletal Muscle Cell (Myocyte)

Skeletal Muscle

Blood vessel

Sheath

Blood vessel

Single muscle fibre

myofilament

Single myofibril

Osteoporosis Canada
Ostéoporose Canada

ONTARIO
OSTEOPOROSIS
STRATEGY
Skeletal Muscle Cell Vitamin D Metabolism

C2C12 muscle cell 1α-hydroxylase

With authors’ permission; Girgis et al, Endocrinology 2014
C2C12 muscle cell - functional 1α-hydroxylase - less proliferation and greater myotube diameter

With authors’ permission; Girgis et al, Endocrinology 2014
Vitamin D supplementation elevates VDR in muscle biopsies

$1,25(OH)_2D$ dose-dependently elevates VDR mRNA expression (↑36%) in human primary myoblasts from healthy young adults

Pojednic et al, Calcif Tissue Int, 2014
Vitamin D supplementation elevates VDR in muscle biopsies

- 16 wk trial of 4000 IU/D vs placebo in 8 older men and 12 women elevates VDR gene expression in muscle biopsies.
- VDR protein higher if vitamin D sufficient $p=0.02$, regardless of trial group.

Pojednic et al, Calcif Tissue Int, 2014
Vitamin D supplementation elevates muscle VDR and fibre size

- 4 mo trial
- Women > 65 y
- 4000 IU vitamin D vs placebo
- 25(OH)D 43.6 to 80.0 nmol/L in treatment group; NS change in placebo.

Ceglia et al, JCEM 2013
Vitamin D supplementation trial after stroke

• 2-y trial of 1000 IU vitamin D$_2$ vs placebo
• Women (n=96) after stroke
• Baseline 25(OH)D < 25 nmol/L
• Treatment:
 – ↑ relative number and size of type II muscle fibres
 – Improved muscle strength
 – 59% reduction in falls (95% CI, 28-81, p=0.03)
 – Fewer hip fractures (4/48 vs 0/48, p=0.049)

Sato et al Cerebrovasc Dis 2005
• 2-y double blind RCT 800 IU/d with and without exercise vs placebo
• Women 70-80 y, home-dwelling, Finland
• 25(OH)D > 65 nmol/L at baseline
• Primary outcome: falls
• Vitamin D maintained femoral neck BMD and increased tibial trabecular BMD, but did not alter muscle strength or balance.

Figure Legend:
Hazard Ratios (95% CIs) for Fallers, Injured Fallers, and Multiple Fallers Using the Placebo Without Exercise Group as the Reference
Cumulative hazard is presented for the injured fallers. *P < .05 compared with the placebo without exercise group.
• Osteoporosis and falls are similarly common in Canadian women > 65 y; dx in men is less common
• Osteoporosis Canada recommends calcium, vitamin D and activity in the prevention and management of osteoporosis
• Most Canadians have good vitamin D status
• For those with low vitamin D status
 – Benefits of achieving good vitamin D status may realized as improved:
 • musculoskeletal health, bone density, muscle mass, falls prevention
Acknowledgements

CRC Tier I, Nutrition and Health Across the Lifespan
Vitamin D Food Policy in Canada

• Mandated fortification
 – Milk ~100 IU/cup
 – Margarine ~25 IU/tsp

• Food label panels
 Nutritional Facts
 – 1983 recommendations
 • 200 IU/d RNI vs
 – 2011 recommendations
 • 600 to 800 IU/d RDA